NEW STM32 MICROCONTROLLER BASED COSMIC RAY INTENSITY REGISTRATION SYSTEM FOR THE NEUTRON MONITOR

A.Shepetov^{a,b}, O.Kryakunova^c, N.Nikolayevsky^c, N.Salikhov^c, V. Yanke^d

- (a) P.N.Lebedev Physical Institute of the Russian Academy of Sciences (LPI), Moscow, Russia
 (b) Tien Shan Mountain Cosmic Ray Station, Almaty, Kazakhstan
 (c) Institute of Ionosphere, Almaty, Kazakhstan
- (d) P.N.Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences (IZMIRAN), Troitsk, Russia

'10 Years NMDB' Workshop 20–23 March 2017, Athens, Greece

Technical requirements

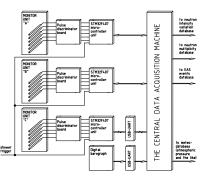
- highly stable uninterruptable measurements of the intensity of input pulse signals during many months & years long period;
- internal generation and intensity registration of various neutron multiplicity events according to different algorithms, in parallel with basic monitoring functionality;
- additional data aquisition algorithm with registration of high-resolution pulse intensity series (up to 5000-10000 succeeding counts with up to 2-5 μ s time resolution), in parallel again;
- alternative operation mode with registration of the amplitude of analogue type input signal;
- possibility of a fast on-the-fly change of all operation settings in dialog regime just in the time of measurement run;

Technical requirements (continuation)

- general compactness and low power consumption with possibility of prolonged operation from an autonomous (accumulator-based) power source;
- independence on continous presence of qualified technical personnel at the detector disposition site.

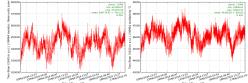
Main features of the system set-up

- STM32F407 type 32-bit microcontroller unit
- STMF4Discovery type evaluation board

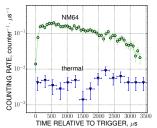


- embedded MCU program code written on the basis of the libopencm3 ARM microcontroller programming library (http://libopencm3.org/) and compiled with the use of the gnu-arm-eabi toolchain (https://launchpad.net/gcc-arm-embedded);
- up to 16 informational channels per MCU;
- principally asynchronous multithread operation mode (there is its own private & independent program thread for each data channel);

Main features of the system set-up (continuation)


- any communication with outer world succeeds in a simple textual form through in-build asynchronous port (UART) of MCU (typically, connected to an UART ← USB interface converter at the side of master machine);
- all the necessary internal parameters which define any particulars of microcontroller operation can be set at any time by sending a simple name=value textual messages to MCU UART port;
- modular structure of embedded code;
- two flavours of embedded code aimed for the input pulse counting and ADC kind measurements.

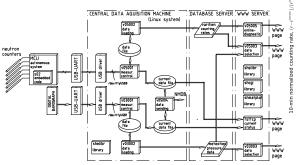
Use case: the Tien Shan 18NM64 type neutron supermonitor



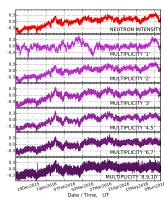
 measurement of the neutron intensity time series with a 40 μs resolution and synchronization both from internal and external (typically, caused by a close extensive air shower (EAS) passage) trigger types.

- the neutron intensity monitoring with a 1 min periodicity (simultaneously on three 6-counter monitor units);
- internal generation and intensity monitoring of the neutron multiplicity signals;

Neutron intensity and triple multiplicity signal variation during the Spring 2016.

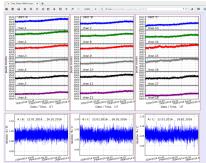

High-resolution time series of neutron signal after a 10¹⁷ EAS core passage through the neutron monitor.

The compact neutron monitor data registration system

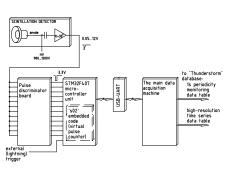

• prototypic set-up

• block diagram of software complex

 a sample of a half-year long data set

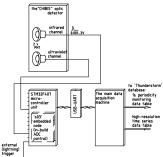


An output sample of the neutron monitor database

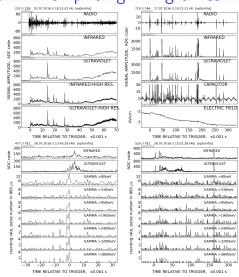


Use case: remote gamma-ray detector (3750 m a.s.l.)

The remote detector point in vicinity of a mountain peak (400 m above the level of Tien Shan station; 3750 m a.s.l.), electromagnetically shielded scintillation gamma-ray detector with autonomous powering installed in this point, and its compact, microprocessor based data acquisition system.


	\		
COOM ING RAILE, DUISE number in 100 us		AATE, pulse number in 160 us	S / S - S - S - S - S - S - S - S - S -
builse number in 100 us		r in 25 us	8/116 25.07.2016 // 13 4 4 4 4 4 4 4 4 4 4 4 4 4

TIME RELATIVE TO TRIGGER. x0.001 s


A CONTROL OF THE PROPERTY OF T

A sample of the events registered at remote detector point: time series of gamma-ray intensity written with a $160\,\mu s$ and $25\,\mu s$ resolution around the moment of nearby lightning discharge (at T=0).

Use case: analogue signal of the optic lightning emission

- registration of distant lightning emission during the night time in infrared and ultraviolet diapasons;
- synchronization either with internal or external (lightning) trigger;
- simultaneous registration of input signal intensity with a low (190µs) and high (20µs) time resolution.

Time series of lighting emission measured simultaneously with a 190µs and 20µs (HIGH RES) time resolutions. Development of lightning discharge can be traced by intensity of its attendant radio-signal (RADIO panels. 10µs resolution).

CONCLUSION

- the modern cheap MCU based technique is perspective for mass application in experimental cosmic ray physics;
- its effective use was checked practically in a number of experiments held at Tien Shan in 2015–2017 years, including the long term & high stability neutron monitor signal registration.