EXTENSIVE AIR SHOWER INVESTIGATIONS AT THE TIEN SHAN MOUNTAIN COSMIC RAY STATION: THE CURRENT STATE OF EXPERIMENT

A.P.Chubenko^a, A.L.Shepetov^a, O.N.Kryakunova^b, R.A.Nam^a, V.P.Pavlyuchenko^a, V.V.Piscal^a, V.A.Ryabov^a, N.O.Saduyev^c, T.Kh.Sadykov^d, N.M.Salikhov^b, L.I.Vil'danova^a, V.V.Zhukov^a

CONTENTS

- Tien Shan detector complex for registration of the extensive air showers (EAS) after its modernization period of 2000-2015 years
- Current results of the EAS investigation
 - * EAS energy spectrum, shower ages, lateral distributions, etc;
 - * EAS neutron component;
 - * high multiplicity events at the underground neutron detector;
 - * monitoring data of the intensity of background radiations;
 - * EAS & seismology;
 - * EAS radio signal;
 - * EAS cores within ionization calorimeter.

Technical requirements to present day shower installation aimed specifically for investigation of the EAS core region

- complex detector for simultaneous registration of various EAS components (e/γ, μ, charged and neutral hadrons, Cherenkov photons, etc);
- dense disposition of detector points in the central part of installation with spatial step of the same order as the typical shower core sizes of $10^{14} 10^{17}$ eV EAS ($\lesssim 3 5$ M);
- dynamic range of amplitude signal measurements of $\sim 10^5-10^6$ order;
- determination of EAS arrival direction.

A. P. Chubenko et al New complex EAS installation of the Tien Shan mountain cosmic ray station. Nucl. Instrum. Methods A, 832:158-178, 2016.

Tien Shan EAS detector complex

• CENTER-I:

- * scintillators;
- neutron detectors;
- * undeground set;
- * radio.

- CENTER-II:
 - scintillators;
 - * ionization-neutron
 - calorimeter (INCA).

Scintillation shower particles detector system CENTER

- central ~900 m² scintillation carpet with dense detector disposition;
- 72 scintillation detectors with 0.25 m² sensitive area.

Scintillation EAS particles detector

İ

500

Block diagram of multichannel ADC system

Dynamic range of particle density measurement

Shower trigger generation logic

СХЕМН ФОРМИРОВАНИЯ ТРИГГЕРНОГО СИГНАЛА

Approximation of particle distribution in an EAS event

$$\chi^2 = \sum_D \left(\frac{n_D/S_D - \rho_{NKG}(r_D(x_0, y_0), s, N_e)}{\sigma(n_D/S_D)} \right)^2 \rightarrow \min_{[x_0, y_0, s, N_e]}$$

max: 5035; sum: 61163; shower: 6.3 4.2 2.5e+06 0.94 35.6

max: 46530; sum: 348186; shower: 7.1 1.0 1.2e+07 0.87 219.5

CENTER subsystem: three measurement runs

EAS size spectrum

EAS spectrum & events statistics

Expected EAS number for 1000h long operation time

Threshold	CENTER	CENTER + periphery $R \lesssim 100$ м
$N_e > 10^5$ $(E_0 \gtrsim 3 \cdot 10^{14} \mathrm{eV})$	$2\cdot 10^5$	$8\cdot 10^5$
$N_e > 10^6$ $(E_0 \gtrsim 3 \cdot 10^{15} \mathrm{eV})$	$6\cdot 10^3$	$2\cdot 10^4$
$N_e > 10^7$ $(E_0 \gtrsim 3 \cdot 10^{16} \mathrm{eV})$	60	200
$egin{aligned} \mathcal{N}_e > 10^8 \ (\mathcal{E}_0 \gtrsim 3 \cdot 10^{17} \mathrm{eV}) \end{aligned}$	_	2

Lateral distribution of shower particles

TIEN SHAN, 2014-2016:

• $N_e = 7.3 \cdot 10^6 (1)$

•
$$N_e = 4.1 \cdot 10^6$$
 (2)

•
$$N_e = 2.3 \cdot 10^6$$
 (3)

•
$$N_e = 1.3 \cdot 10^6$$
 (4)

•
$$N_e = 7.3 \cdot 10^5$$
 (5)

Neutron detectors

 Low-energy neutron detector in 2016–2017

EAS cores within the neutron supermonitor: 2016–1017 data

EAS & neutrons

10.11.2016 17:28:22 [4536] ABCD

22.12.2016 11:13:33 [2420] BCD

EAS & low-energy γ -ray signal

10.11.2016 17:28:22 [4536] ABCD

25.11.2016 20:49:19 [3634] BCD

22.12.2016 11:13:33 [2420] BCD

EAS & low-energy γ -ray signal's beginning

5000

22.12.2016 11:13:33 [2420] BCD

25.11.2016 20:49:19 [3634] BCD

 η^{10}

a:

15

10.11.2016 17:28:22 [4536] ABCD

Monitoring data of the neutron background intensity

On the underground neutron monitor

A.P.Chubenko et al Neutron Events in the Underground Monitor of the Tien Shan High-Altitude Station // BLPH vol. 38, 2007, 34, 4, 107-113.

A.P.Chubenko et al The underground neutron events at Tien-Shan // Proc. of 30th ICRC, 2008, 4, 3-6. 20 / 28

Neutron events at the ungerground monitor

- * $M\gtrsim 200$: 6 ev., 0.4 shw.;
- * $M\gtrsim 300:$ 0.2 ev., 0.1 shw.;

 a sample of high multiplicity underground events

Neutron intensity monitoring at the underground detector

EAS & seismology (acoustics)

G.A. Gusev et al Cosmic Rays as a New Instrument of Seismological Studies // BLPH vol. 38, 2011, 12, 374.

G.A. Gusev et al The First Results of Observations of Acoustic Signals Generated by Cosmic Ray Muons in a Seismically Stressed Medium // BLPH vol. 40, 2013, 3, 74.

Acoustics in 2016 $\ensuremath{\mathsf{r}}$

EAS & acoustics : 2016-2017

EAS radio-signal - I

Scepe Opa Pearier		
	A1 Vert	: o G
	A1 East Most	: °o °ò
******	AT LUST-WOSt	: "o "õ
	A1 Nord-Sud	: °o °õ
0 18 10 8		i a 'a
	A2 Vert	: "o "ò
99999999999999999999999999999999999999	A2 Fast-West	: o o
****	****	· `o `o
	A2 Nord-Sud	<film flip=""> 4 Fie</film>
		Pick Pdf Png Help Core

- frequency range 25-75 MHz;
- 3 registration points around CENTER scintillation carpet;
- 2 antennas with horizontal and one with vertical polarization in every point;
- 12 bit ADC with 4 ns measurement granularity;
 8 informational channels × 10000 time intervals in each event;
- synchronization by EAS trigger.

EAS radio-signal - II

04.08.2016 18:28:09 [3885] BCD

max: 7071; sum: 91839

04.08.2016 22:30:26 [5509] BCD

04.08.2016 09:35:43 [1338] BC

max: 886; sum: 18661

27 / 28

EAS cores within ionization calorimeter

28 / 28