ШИРОКИЕ АТМОСФЕРНЫЕ ЛИВНИ НА ТЯНЬ-ШАНЬСКОЙ ВЫСОКОГОРНОЙ СТАНЦИИ ФИАН: СОВРЕМЕННОЕ СОСТОЯНИЕ ЭКСПЕРИМЕНТА

А.П.Чубенко^а, А.Л.Щепетов^а, Л.И.Вильданова^а, В.В.Жуков^а, О.Н.Крякунова^b, Р.А.Нам^a, В.П.Павлюченко^a, В.В.Пискаль^a, В.А.Рябов^a, Н.О.Садуев^c, Т.Х.Садыков^d, Н.М.Салихов^b

(а) Физический институт им. П.Н.Лебедева, Москва, Россия
(b) Институт ионосферы, Алматы, Казахстан
(c) Казахский национальный университ, Алматы, Казахстан
(d) Физико-технический институт, Алматы, Казахстан

СОДЕРЖАНИЕ

- Модернизированный комплекс детекторов для регистрации широких атмосферных ливней (ШАЛ) на Тянь-Шаньской высокогорной станции.
- Текущие результаты регистрации ШАЛ:
 - * энергетический спектр, возраст, ФПР;
 - * направления прихода;
 - * нейтронная компонента ШАЛ;
 - * нейтронные события на подземном мониторе;
 - * мониторинг интенсивности радиационного фона;
 - * ШАЛ & акустика (сейсмология);
 - * радио сигнал ШАЛ;
 - * стволы ШАЛ в ионизационном калориметре.

Исходные требования к установке для исследования центральной области ШАЛ

- комплекс детекторов для одновременной регистрации различных компонент ШАЛ (e/γ, заряженные и нейтральные адроны, мюоны, фотоны черенковского излучения); «комплексная установка»;
- плотное расположение детекторов частиц с пространственным шагом того же порядка, что и характерный размер стволов ШАЛ с энергией 10¹⁴ – 10¹⁷ эВ (≤ 5 – 10 м; «установка с центральной частью»);
- динамический диапазон измеряемых сигналов $\sim 10^5-10^6$;
- возможность определения направления прихода ШАЛ.

A. P. Chubenko et al New complex EAS installation of the Tien Shan mountain cosmic ray station. Nucl. Instrum. Methods A, 832:158-178, 2016.

Комплекс ливневых детекторов ТШВНС

- CENTER-I:
 - * сцинтилляторы;
 - * нейтроны;
 - * подземелье;
 - * радио.

- CENTER-II:
 - * сцинтилляторы;
 - * ионизационно
 - нейтронный
 - калориметр.

Схема сцинтилляционной установки CENTER

Схема расположения детекторов ливневой системы в центральной части ТШВНС

- общая площадь центрального «ковра» 900 м²;
- 72 детектора с чувствительной площадью 0.25 м².

Сцинтилляционный детектор

Блок-схема ливневой установки: система АЦП

Блок-схема системы АЦП

Динамический диапазон измерений плотности частиц

Схемы генерации триггерных сигналов

СХЕМН ФОРМИРОВАНИЯ ТРИГГЕРНОГО СИГНАЛА

Аппроксимация плотности потока частиц

$$\chi^2 = \sum_D \left(\frac{n_D / S_D - \rho_{NKG}(r_D(x_0, y_0), s, N_e)}{\sigma(n_D / S_D)} \right)^2 \to \min_{[x_0, y_0, s, N_e]}$$

max: 5035; sum: 61163; shower: 6.3 4.2 2.5e+06 0.94 35.6

max: 46530; sum: 348186; shower: 7.1 1.0 1.2e+07 0.87 219.5

Система CENTER: три серии измерений

Спектр ШАЛ по числу частиц

Спектр ШАЛ & статистика

Ожидаемое количество событий за 1000 часов измерений

Порог	<i>CENTER</i> (запущенная часть)	<i>CENTER</i> + периферия <i>R</i> ≲ 100м		
$N_e > 10^5$ $(E_0 \gtrsim 3 \cdot 10^{14} \mathrm{eV})$	$2\cdot 10^5$	$8\cdot 10^5$		
$N_e > 10^6$ $(E_0 \gtrsim 3 \cdot 10^{15} \mathrm{eV})$	$6\cdot 10^3$	$2\cdot 10^4$		
$N_e > 10^7$ $(E_0 \gtrsim 3 \cdot 10^{16} \mathrm{eV})$	60	200		
$N_e > 10^8 \ (E_0 \gtrsim 3 \cdot 10^{17} { m eV})$	_	2		

Возраст & положение оси ШАЛ

• 2014-2015

• 2015-2016

13/35

Пространственное распределение ливневых частиц

TIEN SHAN, 2014-2016:

- $N_e = 7.3 \cdot 10^6 (1)$
- $N_e = 4.1 \cdot 10^6$ (2)
- $N_e = 2.3 \cdot 10^6$ (3)
- $N_e = 1.3 \cdot 10^6$ (4)
- $N_e = 7.3 \cdot 10^5$ (5)
- ARAGATS (lines)

Направления прихода ШАЛ — І

Направления прихода ШАЛ — ІІ

360

b.00010

1.00008 4

00006

1.00004 .00002

Мониторинг фоновой интенсивности заряженных частиц

17/35

ШАЛ & нейтроны (1992-2010)

A.P.Chubenko et al Anomalous time structure of extensive air shower particle flows in the knee region of primary cosmic ray spectrum // Journal of Phys.G, 2002, 2, 251.

Н. М. Нестерова и др. Потоки адронов с энергией 10-2000 ГэВ в ШАЛ от ПКИ в области 1-100 ПэВ по тянь-шаньским данным. Изв. РАН Сер.физ., 2005, 69, 337. A.D.Erlykin The neutron "thunder" accompanying the extensive air shower // Journal of Phys.G, 2006, 34, 565.

18 / 35

ШАЛ & нейтроны низкой энергии (1996-2006)

A.P.Chubenko et al The influence of background radiation on the events registered in a neutron monitor at mountain heights // Journal of Phys.G. 2008, 35, 085202.

Нейтронные детекторы

 Детектор нейтронов низкой энергии в 2016–2017 г

Стволы ШАЛ в нейтронном мониторе: 2016-1017 гг

ШАЛ & нейтроны

10.11.2016 17:28:22 [4536] ABCD

25.11.2016 20:49:19 [3634] BCD

22.12.2016 11:13:33 [2420] BCD

ШАЛ & гамма-фон

10.11.2016 17:28:22 [4536] ABCD

25.11.2016 20:49:19 [3634] BCD

22.12.2016 11:13:33 [2420] BCD

ШАЛ & начало гамма-фона

10.11.2016 17:28:22 [4536] ABCD

25.11.2016 20:49:19 [3634] BCD

22.12.2016 11:13:33 [2420] BCD

20

-1000

24 / 35

ШАЛ & гамма-фон в 1990-х годах

A.P.Chubenko et al The influence of background radiation on the events registered in a neutron monitor at mountain heights // Journal of Phys.G, 2008, 35, 085202.

Мониторинг фоновой интенсивности нейтронов

О подземном нейтронном мониторе

A.P.Chubenko et al Neutron Events in the Underground Monitor of the Tien Shan High-Altitude Station // BLPH vol. 38, 2007, 34, 4, 107-113.

A.P.Chubenko et al The underground neutron events at Tien-Shan // Proc. of 30th ICRC, 2008, 4, 3-6. 27 / 35

Нейтронные события в подземном мониторе

 примеры нейтронных событий с высокой кратностью

28 / 35

Мониторинг нейтронов на подземном детекторе

ШАЛ & сейсмология (2012)

G.A. Gusev et al Cosmic Rays as a New Instrument of Seismological Studies // BLPH vol. 38, 2011, 12, 374.

G.A. Gusev et al The First Results of Observations of Acoustic Signals Generated by Cosmic Ray Muons in a Seismically Stressed Medium // BLPH vol. 40, 2013, 3, 74.

Сейсмология в 2016 г

ШАЛ & сейсмология: сезон 2016-2017

02.02.2017 05:44:25 (1112) C

06.02.2017 10:05:20 (1909) BC

09.02.2017 08:47:47 [1694] 80

mio: 12219; jum; 63656

02302 17 05:06:03 ... 02:02:17 05:51 03 Marather: 299.00 5: step: 0.01001

Регистрация радио-сигнала от ШАЛ — І

Scope Ope Fearler					
		A1 Vert	t. K	°0	i di
	A1 Fa	st_West	2	°0:	"ċ
*****	-		a x	~ ©:	Ö
	A1 No	rd-Sud	1	°o	ő
0 (8 (0 8			;	"O:	õ
		A2 Vert	* *	"(c):	÷.
1999-999-999-999-999-999-999-999-999-99	A2 Ea	st-West		0	ö
****		*****		0	ö
	AZ INORO-SUG			Nm Rup :	4 Fis
			Pick	Pdf Png	I Help Cines

- диапазон частот
 25-75 MHz;
 - 3 пункта регистрации вокруг сцинтилляционного ковра CENTER-I;
- 2 антенны с горизонтальной и одна с вертикальной поляризацией в каждом пункте;
- 12 битный АЦП с разрешением 4 нс;
 8 информационных каналов × 10000 временных интервалов;
- синхронизация по триггеру ШАЛ.

Регистрация радио-сигнала от ШАЛ — //

04.08.2016 18:28:09 [3885] BCD

max: 7071; sum: 91839

nax: 56693; sum: 477089

04.08.2016 09:35:43 [1338] BC

max: 886; sum: 18661

Стволы ШАЛ в ионизационном калориметре

35 / 35