Аппаратурно-программный комплекс для исследования космических лучей и геофизических процессов на Тянь-Шаньской высокогорной станции

> Диссертация на соискание учёной степени доктора физико-математических наук

Специальность 01.04.01— «приборы и методы экспериментальной физики»

А.Л. Щепетов

Москва — 2020

Общая характеристика работы

Предмет диссертации

Разработка аппаратуры и программ для проведения измерений на комплексе детекторов Тянь-Шаньской высокогорной научной станции ФИАН (ТШВНС) и для анализа полученной в результате этих измерений информации.

Основная цель работы

Создание современного многофункционального комплекса научных детекторов и программного обеспечения, которые предназначены для проведения высокогорных экспериментов, связанных с решением ряда актуальных проблем в области физики космических лучей и геофизики.

Актуальные направления исследований— І

▶ Изучение, путем регистрации широких атмосферных ливней (ШАЛ), космических лучей (КЛ) в диапазоне энергий 10¹⁴ – 10¹⁷ эВ,

включая область излома («knee») спектра КЛ при <mark>3 · 10¹⁵ эВ</mark>, где наблюдается ряд аномальных, до сих пор необъясненных явлений:

- нарушение изоспиновой симметрии, и др. особенности гамма-семейств в РЭК (Памир, Чакалтайя, Фудзи, 1970е–1980е гг).
- нарушение скейлинга в событиях РЭК+ШАЛ (Тянь-Шань, HADRON, 1985–1990 гг).
- аномальная множественность нейтронов в стволах ШАЛ (Тянь-Шань, NM64, 1995–2000 гг).
- «muon puzzle» (*KASCADE*, *ALEPH*, *DELPHI*, *HEBOD*; 2000–...).

3/33

Актуальные направления исследований — //

 Прецизионные измерения вариации интенсивности космических лучей в диапазоне 10⁹ – 10¹¹ эВ.

Непрерывные долговременные (на протяжении десятилетий) ряды данных необходимы для решения ряда научных и прикладных задач:

- построение моделей Солнца и гелиосферы.
- прогноз солнечной активности и геомагнитной обстановки, «космическая погода».
- слежение за уровнем радиации в околоземном пространстве и обеспечение безопасности космических полетов.
- мониторинг естественного радиоактивного фона в окружающей среде.

Актуальные направления исследований — ІІІ

 Изучение явлений атмосферного электричества и выяснение роли космических лучей в процессах генерации и развития молнии

- направлению «атмосферная физика высоких энергий» положено начало в конце 1990-х годов с открытием потоков жестких излучений от грозовых облаков.
- в настоящее время во всем мире ведутся эксперименты по изучению молний с применением спутников, аэростатов, авиационной техники и наземных установок.
- в том числе эксперименты такого рода проводятся на ТШВНС.

Актуальные направления исследований— IV

 Поиск эффектов, вызываемых взаимодействиями частиц проникающей компоненты КЛ с веществом земной коры в зоне глубинных литосферных разломов

- в ряде работ ФИАН и ИФЗ предсказан эффект триггерного воздействия ионизации от мюонов КЛ, провоцирующей образование микротрещин и генерацию упругих колебаний в напряженной среде на краях разлома.
- такие колебания распространяются в виде звуковой волны, а их регистрация есть средство мониторинга текущих условий в зоне разлома.
- ТШВНС представляет собой уникальную экспериментальную площадку для проверки этой теории.

На защиту выносятся:

- Аппаратура многоцелевого экспериментального комплекса ТШВНС: детекторы и электронные средства управления измерениями для исследований в области физики КЛ, атмосферного электричества, геофизики.
- Программное обеспечение для управления измерениями на различных подсистемах комплекса ТШВНС и обработки результатов этих измерений.
- Математические методы для обработки данных от новой ливневой установки, расчета плотности потока частиц и восстановления параметров ШАЛ по этим данным, а также ряд реализующих эти методы программ.
- Совокупность программных моделей, которые строились на основе пакета *Geant4* для детекторов экспериментального комплекса с учетом типичных условий ТШВНС, и результаты модельных расчетов, которые использовались для определения характеристик этих детекторов.

На защиту выносятся (продолжение):

- Структура информационного комплекса, обеспечивающего хранение всех данных об экспериментах ТШВНС.
- Данные тестовых измерений, которые проводились во время эксплуатации экспериментального комплекса ТШВНС в 2015–2019 гг, и которые подтверждают корректность вновь разработанных аппаратуры, алгоритмов и программ.
- Ряд новых физических результатов, полученных при эксплуатации вновь созданного экспериментального комплекса:
 - пространственные распределения тепловых нейтронов и гамма-излучения, сопровождающих прохождение ШАЛ;
 - характеристики мюонной компоненты ШАЛ в области излома спектра КЛ;
 - временны́е и энергетические распределения электронов, гамма-, оптического и радио-излучения от молний;
 - данные об особенностях поведения акустических шумов сейсмического происхождения и их корреляции с прохождением энергичных частиц КЛ.

Структура работы

▶ Объем

Диссертация включает в себя 316 страниц печатного текста и 102 рисунка. Список литературы содержит 332 наименования.

Содержание

Введение

- 1. Физические задачи для исследований, проводимых на ТШВНС
- 2. Установка для регистрации широких атмосферных ливней
- 3. Детектор адронной компоненты космических лучей
- 4. Нейтронное сопровождение ШАЛ
- 5. Мюонный детектор
- 6. Обеспечение геофизических исследований

Общее заключение

Результаты работы — І: аппаратура

 На ТШВНС создан многоцелевой экспериментальный комплекс, который не имеет мировых аналогов по своей информативности, высокогорному расположению, набору детекторов, инфраструктуре.

В составе комплекса

• Создана новая система детекторов для регистрации частиц ШАЛ. Основные характеристики системы — динамический диапазон измерения потока частиц $\sim 10^5$ с возможностью расширения до $(1-2)\cdot 10^6$, до $\sim 10^4$ информационных каналов, постоянное время обработки событий, — полностью отвечают задаче исследования стволов ШАЛ с энергией $(10^{14}-10^{17})$ эВ.

- Созданы новые подсистемы нейтронных детекторов, которые применялись для измерения параметров ядерно-активной компоненты КЛ в широком диапазоне энергий: от тепловых нейтронов до адронов (100–1000) ГэВ. Детекторы для регистрации нейтронов, которые образуются при взаимодействиях мюонов, использовались для изучения мюонной компоненты космических лучей.
- В состав комплекса включены детекторы для регистрации сопровождающего прохождение ШАЛ гамма-излучения в энергетическом диапазоне (30–3000) кэВ. Это открывает еще один канал для получения информации об адронной компоненте ШАЛ.

 Для экспериментов, связанных с физикой атмосферного электричества, созданы высотные пункты, где установлены детекторы ускоренных до ~100 МэВ электронов и детекторы излучения молний в гамма-, (20–3000) кэВ, УФ, (200–400) нм, ИК, (600-800) нм, диапазонах, а также приемники радиоволн (0.1–10) МГц, (1–10) кГц, (1–100) Гц. Для обслуживания этих детекторов созданы специальные электронные системы, способные к длительной автономной работе в непосредственной близости к области развития молниевых разрядов.

 Создана система детекторов для работы с сигналами сейсмического происхождения. Система включает в себя установленные в подземной скважине ТШВНС акустические приемники, нейтронные и гамма-детекторы, а также специальную аппаратуру для приема их сигналов.

Результаты работы — И: программное обеспечение

- Разработаны программы для управления всеми подсистемами экспериментального комплекса ТШВНС, для приема, обработки и хранения информации об измерениях с возможностью доступа к ней по сети Интернет в режиме реального времени.
- Для новой ливневой установки отработана методика определения параметров ШАЛ по ее исходным данным (кодам АЦП), а все необходимые алгоритмы реализованы в соответствующих программах. Список алгоритмов включает в себя:
 - пересчет кодов АЦП, зарегистрированных в двух амплитудных диапазонах, к единой амплитуде сигнала в детекторах ливневой установки
 - переход от амплитуды сигнала к значениям плотности потока частиц в каждом детекторе с учетом его индивидуальной калибровки
 - определения параметров ШАЛ по пространственному распределению этой плотности

max: 71377; sum: 339568; shower: -7.3 4.9 1.0e+07 0.79 218.

Результаты работы — III: тестирование методики

- Работа новой ливневой установки ТШВНС проверена во время ее тестовой эксплуатации в 2015–2019 гг. На протяжении этого периода были измерены:
 - спектр ШАЛ по числу частиц
 - распределения ШАЛ по параметру «возраста»
 - функции пространственного распределения ливневых частиц

В области перекрытия параметров эти характеристики согласуются с аналогичными результатами прежних экспериментов, что подтверждает корректность вновь разработанных методик, аппаратуры и алгоритмов.

Результаты работы — *IV*: моделирование

- На основе пакета Geant4 разработаны программные модели детекторов и характерных для ТШВНС объектов окружающей среды. Модели использовались в следующих расчетах:
 - ожидаемого сигнала от нейтронного монитора NM64 при попадании в него частиц космических лучей

17 / 33

- вероятности регистрации нейтронов и гамма-квантов детекторами различного типа
- влияния на процесс регистрации нейтронов со стороны объектов внешней среды
- потока частиц в подземном помещении ТШВНС и обоснования возможности применения нейтронных детекторов для регистрации мюонов КЛ

 ожидаемых характеристик излучения от развивающихся в атмосферном электрическом поле электронно-фотонных лавин

Результаты работы — V: информационный комплекс

Для хранения всей полученной в экспериментах ТШВНС информации создана система взаимосвязанных баз данных и программных интерфейсов, обеспечивающая доступ к этой информации внешним пользователям в режиме реального времени.

http://tien-shan.org

► BASA SKOTEPHINEHTA/: X she	x sheet x shereg	x stema x +	🖒 Tien Shan Database: 🗴 🔶
	🖻 🏄 🔯 Benche/verbecces/	0 0 x 0 0 x 0 =	
БАЗА ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ ТШВНС Поблатична			Installation Image: Second secon
Базы данных		Состояние связи с подсистемами	
Approximation of the second se	These Liberca are retroch transmit Reservances and the second se	Alticidences (Junit) or Constructional and anti-anti-anti-anti-anti-anti-anti-anti-	
Списон измерений, проводившенся на найтронные датакторых ТШВИС с начала 2006 г. Нейтронные детекторы на высота 3500 м:	Спектры 6 интенсивности Антинграные спектры интупьско и интенсивность бонового счета сигналоз от детекторов центральной гиваковой установан.	(ссылки "ОК" справа открывают енно с распечатиой текущих данных()	Chamely: 1234567801011121 ↓ 24567801011121
2013 : 2012 : 2011. Ганиа-излучение Измерения радисционного ганиа-рока а диогразие 20 - 2000 кай на Тин-	Тригтеры Статистика сигналов ливнового тригтерь. Настройки амплитудных кажалов	Замечания по работе с базой данных	Rum: Pressure correction:

Результаты работы — VI: новые данные

- На протяжении 2015–2019 гг на комплексной установке ТШВНС был получен ряд новых физических результатов:
 - Измерены ФПР тепловых нейтронов и мягкого гамма-излучения, сопровождающего прохождение ШАЛ. Обнаружено, что форма этих распределений существенно изменяется в ливнях с энергией ≃ 3 · 10¹⁵ эВ, то есть в области излома первичного спектра космических лучей.

53 // 1102: 27.11.2016 20:29:23

 Обнаружено, что зависимость средней множественности мюонной компоненты ШАЛ от энергии ливня также изменяет свой вид в области излома. Также наблюдались события с аномальной задержкой мюонного сигнала на сотни микросекунд относительно общего фронта ливневых частиц.

 Получены временные и энергетические распределения ускоренных электронов и гамма-излучения от атмосферных разрядов различного типа, наблюдавшиеся в грозовых облаках на расстояниях ~(50–100) м от молниевого ствола.

GAMMA-RAY ENERGY, Ex, keV

23 / 33

 В экспериментах по синхронной регистрации излучения молний в различных диапазонах электромагнитного спектра обнаружены различные типы разрядов: короткие, ≤1 мс, импульсы излучения и длительные непрерывные разряды с продолжительностью (300–1000) мс. Наблюдались события с различными особенностями в спектре излучения: гамма-вспышки на начальной стадии разряда, «голубые» и «красные» вспышки с максимумом амплитуды, соответственно, в УФ или ИК диапазоне, «темные» разряды без заметного оптического излучения.

 При мониторинге акустических шумов в частотном диапазоне (0.5–10) кГц обнаружены характерные особенности их поведения в подготовительный период близких землетрясений. Получены указания на существование статистически значимой корреляции между акустическими сигналами сейсмического происхождения и прохождением энергичных частиц проникающей компоненты космических лучей.

Научная новизна

- Впервые в условиях высокогорья создан отвечающий современному уровню экспериментальной техники многоцелевой комплекс детекторов для проведения взаимосвязанных исследований в области физики космических лучей, атмосферной физики высоких энергий, физики солнечно-земных связей, геофизики.
- Детекторы нового комплекса впервые позволили подробно исследовать пространственную структуру потока частиц в стволах ШАЛ с энергией (10¹⁴ – 10¹⁷) эВ. Применение нейтронных и гамма-детекторов с низким энергетическим порогом открыло возможность изучать ранее не регистрировавшиеся потоки тепловых нейтронов и мягких гамма-квантов, что качественно улучшает информативность данных об адронной компоненте ШАЛ. Использование подземных детекторов для регистрации нейтронов, образованных во взаимодействиях мюонов, позволило обнаружить ранее неизвестные особенности мюонной компоненты космических лучей.

Научная новизна (продолжение)

- Впервые в высокогорных условиях созданы высотные пункты размещения детекторов для регистрации излучений от молниевых разрядов вблизи пространственной области их развития и отработана практическая методика проведения таких измерений в грозовых облаках.
- Разработан новый метод оперативного тестирования текущего состояния земной коры в области глубинных разломов, основанный на корреляциях между акустическими сигналами сейсмической природы и прохождением мюонов высокой энергии. Впервые была разработана соответствующая аппаратура и проведен эксперимент по поиску таких коррелированных сигналов.

Научно-практическая значимость

- Новая ливневая установка обеспечивает измерение потоков частиц в центре ШАЛ с энергией до 10¹⁷ эВ. Эти данные позволяют с высокой статистической точностью определять спектр ШАЛ по числу частиц и особенности его поведения в этой области. Такая информация необходима для решения проблемы излома в спектре космических лучей при 3 · 10¹⁵ эВ и объяснения различных аномальных эффектов, наблюдаемых в этом энергетическом диапазоне.
- Систематическое использование нейтронных и гамма-детекторов в экспериментах по регистрации ШАЛ открывает новый канал для получения информации о свойствах их адронной и мюонной компонент. Эти данные необходимы для решения ряда актуальных проблем физики КЛ: построения моделей адронного взаимодействия при высоких энергиях, определения ядерного состава КЛ в области излома и др. Накопленный на ТШВНС опыт эксплуатации нейтронных детекторов и анализа их результатов может быть полезен в других экспериментах.

Научно-практическая значимость (продолжение)

- Вновь созданные программы позволяют использовать пакет Geant4 для моделирования детекторов, предназначенных для исследования КЛ и их взаимодействия с веществом окружающей среды. Такие модели систематически применяются на ТШВНС при анализе текущих измерений, а также могут использоваться при планировании других экспериментов.
- Новые данные о феноменологических характеристиках излучений от молниевых разрядов необходимы для создания современных теорий молнии. Накопленный опыт проведения измерений в непосредственной близости к области развития молний может быть полезен при постановке подобных экспериментов.
- Эксперимент по регистрации акустических сигналов сейсмической природы представляет интерес для различных проблем геофизики и, в частности, для задачи прогноза землетрясений.
- Созданные на ТШВНС база экспериментальных данных и комплекс связанных с нею программ обеспечивают доступ к информации обо всех проводимых здесь исследованиях, что может использоваться для обработки их результатов участниками различных научных групп.

Личный вклад автора

- проектирование, монтаж и наладка аппаратуры для детекторов многоцелевого экспериментального комплекса ТШВНС: установки для регистрации ШАЛ; нейтронных и мюонных детекторов; детекторов установки «Гроза»; радио-,оптических и акустических детекторов для экспериментов по геофизической тематике.
- создание алгоритмов обработки поступающей информации и реализующего их программного обеспечения.
- окончательный ввод в строй ливневой установки, ее эксплуатация во время измерений 2015–2019 гг и обработка полученного в этот период материала.
- создание высотных пунктов для регистрации излучений от молниевых разрядов и проведение измерений на этих пунктах в течение грозовых сезонов 2015–2019 гг.
- разработка моделей на основе пакета Geant4 и моделирование процессов регистрации частиц детекторами ТШВНС с учетом ее специфических особенностей.
- разработка базы данных для хранения всей информации об экспериментах ТШВНС и программных интерфейсов для доступа к этой базе внешних пользователей.

Публикации по нейтронной тематике

- Measurements of the low-energy neutron and gamma ray accompaniment of extensive air showers in the knee region of primary cosmic ray spectrum / A. L. Shepetov, et al. // Eur. Phys. J. Plus — 2020. — Vol. 135, — P. 96.
- Underground neutron events at Tien Shan / A. L. Shepetov, et al. // J. Phys.: Conf. Ser. — 2019. — Vol. 1181. — P. 012017.
- The influence of background radiation on the events registered in a neutron monitor at mountain heights / A. P. Chubenko, A. L. Shepetov, V. P. Antonova et al. // J. Phys. G. – 2008. – Vol. 35. – P. 085202.
- Neutron detector on the basis of a boron-containing plastic scintillator / G. I. Britvich, V. G. Vasil'chenko, Yu. V. Gilitsky et al. // Nucl. Instrum. Methods A. - 2005. - 9. - Vol. 550, no. 1-2. - Pp. 343-358.
- Anomalous time structure of extensive air shower particle flows in the knee region of primary cosmic ray spectrum / V. P. Antonova, A. P. Chubenko, A. L. Shepetov, et al. // J. Phys. G. — 2002. — Vol. 28. — P. 251–266.
- New method of ionization-neutron calorimeter for direct investigation of high-energy electrons and primary nuclei of cosmic rays up to the knee region / K. V. Alexandrov, M. Ambrosio, A. L. Shepetov et al. // Nucl. Instrum. Methods A. — 2001. — Vol. 459, no. 1–2. — Pp. 135–156.

Всего 29 публикаций

в журналах Eur. Phys. J. Plus; J. Phys. G; Nucl. Instrum. Methods A; EPJ Web of Conf.; Bull. Lebedev Phys. Inst.; Письма в ЖЭТФ; Письма в ЖТФ; ДАН; ICRC Proceedings.

Публикации по теме «Гроза»

- The prolonged gamma ray enhancement and the short radiation burst events observed in thunderstorms at Tien Shan/ A. L. Shepetov, et al. // Atmos. Res. - 2021. - Vol. 248. - P. 105266.
- Simultaneous observation of lightning emission in different wave ranges of electromagnetic spectrum in Tien Shan mountains/ A. V. Gurevich, A. P. Chubenko, A. L. Shepetov et al. // Atmos. Res. — 2018. — Vol. 211. — Pp. 73–84.
- Observations of high-energy radiation during thunderstorms at Tien-Shan / A. V. Gurevich, A. L. Shepetov et al. // Phys. Rev. D. — 2016. — Vol. 94. — Pp. 023003-9.
- Time structure of neutron emission during atmospheric discharge / A. V. Gurevich, A. P. Chubenko, A. L. Shepetov et al. // Atmos. Res. — 2015. — Vol. 164-165. — Pp. 339-346.
- Correlation of radio and gamma emissions in lightning initiation / A. V.
 Gurevich, A. P. Chubenko, A. L. Shepetov et al. // Phys. Rev. Lett. 2013. 10. Vol. 111. P. 165001.
- Strong Flux of Low-Energy Neutrons Produced by Thunderstorm / A. V. Gurevich, A. P. Chubenko, A. L. Shepetov et al. // Phys. Rev. Lett. — 2012. — 3. — Vol. 108. — Pp. 125001–4.
- Energy spectrum of lightning gamma emission / A. P. Chubenko, A. L. Shepetov, et al. // Phys. Lett. A — 2009. — Vol. 373. — Pp. 2953-–2958.

Всего 27 публикаций в журналах Atmospheric Res.; Phys.Rev; Phys. Rev. Lett.; Phys. Lett. A; УФН.

Публикации по аппаратуре и методам исследований

- Neutron detection using proportional counters at the HELIS setup/
 O. D. Dalkarov, M. A. Negodaev, ..., A. L. Shepetov // Nucl. Exp. Technique.
 2020. Vol. 63. Pp. 19-24.
- Investigation of acoustic signals correlated with the flow of cosmic ray muons in connection with seismic activity of Northern Tien Shan / K. M. Mukashev, A. L. Shepetov, et al. // Acta Geophys. 2019. Vol. 67. P. 1241–1251.
- New complex EAS installation of the Tien Shan mountain cosmic ray station / A. P. Chubenko, A. L. Shepetov, V. P. Antonova et al. // Nucl. Instrum. Methods A. – 2016. – Vol. 832. – Pp. 158–178.
- Modern status of the Tien-Shan cosmic ray station / V. A. Ryabov, A. L. Shepetov, A. M. Almenova et al. // EPJ Web of Conf. — 2017. — Vol. 145. — P. 12001.
- The STM32 microcontroller based pulse intensity registration system for the neutron monitor / A. Shepetov, A. Chubenko, O. Kryakunova et al. // EPJ Web of Conf. — 2017. — Vol. 145. — P. 19002.
- Search for EAS radio-emission at the Tien-Shan shower installation at a height of 3340m above sea level / A. Haungs, T. Sadykov, A. Shepetov et al. // EPJ Web of Conf. — 2017. — Vol. 145. — P. 11003.
- The large scintillation charged particles detector of the Tien-Shan complex ATHLET / G. I. Britvich, A. P. Chubenko, A. L. Shepetov et al. // Nucl. Instrum. Methods A. – 2006. – 8. – Vol. 564, no. 1. – Pp. 225–234.

Всего 18 публикаций

в журналах Nucl. Instrum. Methods A; ПТЭ; EPJ Web of Conf.; Nucl. Phys. B.