THE SIGNAL OF LOW ENERGY NEUTRONS AND GAMMA RAYS FROM EXTENSIVE AIR SHOWERS IN THE KNEE REGION OF PRIMARY COSMIC RAY SPECTRUM

A.Shepetov^a, A.Chubenko^a, O.Kryakunova^b, K.Mukashev^c,
R.Nam^a, V.Pavlyuchenko^a, V.Piscal^a, V.Ryabov^a, N.Saduyev^c,
T.Sadykov^d, N.Salikhov^b, E.Tautaev^d, L.Vil'danova^a,
V.Zhukov^a

 (a) P.N.Lebedev Physical Institute of Russian Academy of Sciences (LPI), Moscow, Russia
(b) Institute of Ionosphere, Almaty, Kazakhstan
(c) Institute of Experimental and Theoretical Physics
of Al-Farabi Kazakh National University, Almaty, Kazakhstan
(d) Institute for Physics and Technology, Almaty, Kazakhstan

Tien Shan EAS detector complex

Location: Nothern Tien Shan, 43° North, 75° East, 3340m a.s.l.

CENTER-I:

- * EAS detector system;
- neutron and gamma ray detectors;
- * undeground set;
- radio antennas.

CENTER-II:

- * EAS detectors;
- * ionization-neutron calorimeter (*INCA*).

Average time distributions of neutron intensity (background subtracted)

Lateral distribution of the intensity of neutron flux (background subtracted)

Gate time $T_g = 160...8480 \mu s$.

Mean multiplicity of neutron signals

Gate time $T_g = 160...8480 \mu s$. EAS core distance range R = 0...36m.

Low energy gamma ray detector

/11

EAS events with excessive gamma production

Statistics of the "excessive" gamma emission events

 Lateral distribution

CONCLUSION

- the average temporal, lateral, and multiplicity characteristics of low-energy neutron accompaniment were obtained for the 10¹⁴ - 10¹⁶eV EAS;
- within the central EAS region (up to 5-10 m from shower axis) the integral neutron fluence detected after a shower passage varies in the limits of 10⁻³-10⁻² cm⁻² for the said range of primary EAS energies;
- seemingly, the behavior of the average neutron flux parameters changes noticeably near the knee of primary cosmic ray spectrum;
- remarkable events with excessively prolonged emission of soft gamma radiation (the flux of 50-100 keV gamma rays remains at the level of 10-500 cm⁻²s⁻¹ up to a few hundreds of milliseconds after the passage of shower front) were found amongst the cases when the cores of above-the-knee EAS were passing in vicinity to detector system.